Select language

Saltar al contenido

Human Development &
Capability Association

Multi-Disciplinary and People-Centred

  • Type

  • Thematic group

  • Region

  • Search

  1. Evidence and Practice in an age of inequality 5th ACFID Universities Network Conference

    …ustice. Moreover, issues such as gender and sexuality, disabilities, health, age, religion and ethnic minorities, and intersecting forms of discrimination are all part of a wider net of the experience of inequality. Such issues are forcing actors from NGOs, academia, multilaterals and donors to rethink their role and purpose, while continuing to grapple with absolute poverty. As the development community continue to respond to the evolving face of…

  2. Regional networks

    …esent we have colleagues based in Thailand, Indonesia, Aotearoa/New Zealand, Australia, Fiji, and Tonga working in a number of areas including: indigenous issues, poverty, environment, participatory methods, education. Our aim is to create capability conversations within the region by organising seminars and workshops, and to establish (at some point) an annual regional capability conference. We also hope to establish development ethics and human…

  3. HDCA WEBINAR: Children during the Pandemic: A View from the CA

    …alermo): Children`s views on the COVID-19 pandemic: a qualitative study The event will take place through Zoom. Please register in order to receive the link to the meeting and further information. Link for Eventbrite registration, below. https://www.eventbrite.com/e/children-during-the-pandemic-a-view-from-the-ca-tickets-119283081909 This webinar is organised by the Thematic Group on Children and Youth of the Human Development and Capabilities Ass…

  4. JHDC Special Issue Call for Papers – Communities and Capabilities

    …is related to social support, inter-subjectivity, participation, consensus, common beliefs, joint effort aiming at a major objective and intense and extensive relationships. The beginning of this century presents us with new models of community which imply that the traditional concept has changed together with the way people participate in community spaces. Today the place of residence is not necessarily the space people identify themselves with,…

  5. Latin American Network: Introduction

    …LA consisten en facilitar la comunicación entre investigadores en la región, compartir información relevante, organizar eventos académicos y proporcionar diferentes tipos de oportunidades para la construcción de un espacio de discusión diverso e inclusivo centrado en temas relacionados al desarrollo humano en América Latina. Si bien recomendamos fuertemente a todos los colegas interesados en este grupo afiliarse a la HDCA, es posible ser incluido…

  6. Webinar Discussion: Democratising Measurement: A Case Study from Well-Being Public Policy.

    …dates, and to register, please visit our website: http://2021webinarseries.com/ Upcoming Webinar Series Themes 1. Democratising Measurement: A Case Study from Well-Being Public Policy Anna Alexandra & Mark Fabian 6th April, Tuesday, 11am BST (GMT +1) 2. Conceptualizing Well-Being Ingrid Robeyns 19th April, Monday, 6.30pm BST (GMT +1) 3. Methodological Options and Challenges for Measuring Multidimensional Well-Being* 4. Participatory Approaches to…

  7. 1) Abbas, A., Khan, S., Hussain, N., Hanjra, M. A. and Akbar, S. (2013). Characterizing soil salinity in irrigated agriculture using a remote sensing approach’. Physics and Chemistry of the Earth, 55, pp. 43-52. 2) Anderson, J.R., Hardy, E.E., Roach, J.T., and Witmer, R.E., (1976); A Land Use and Land Cover Classification System for Use with Remote Sensor Data, United States Government Printing Office, Vvashington, V 1, pp. 1-27. 3) Barnsley, M. J., & Barr, S. L. (1996). Inferring urban land use from satellite sensor images using kernel based spatial reclassification. Photogramm Eng Remote Sensing, 62(8), 949–958. 4) Brahabhatt, V.S., Dalwadi, G.B., Chhabra, S.B., Ray, S.S., & Dadhwal, V.K., 2000. Landuse/land cover changes mapping in Mahi canal command area, Gujarat, using multitemporal satellite data, J.Indian Soc. Remote Sensing. 28(4), pp 221-232. 5) David,K., Yetta, G., Agung, F., Sharon, H.,& Alison, C.(2016). Land use planning for disaster risk reduction and climate change adaptation: Operationalizing policy and legislation at local levels. International Journal of Disaster Resilience in the Built Environment, 7(2), 158–172. 6) DCHB (District census Handbook) http://censusindia.gov.in/2011census/dchb/DCHB_A/19/1917_PART_A_DCHB_SOUTH%20TWENTY%20FOUR%20PARGANAS.pdf 7) Diallo, Y., Hu, G., & Wen, X. (2009). Applications of remote sensing in land use/land cover change detection in Puer and Simao Counties, Yunnan Province. Journal of American Science, 5(4), 157–166. 8) Duke, N.C., Meynecke, J.O., Dittmann, S., Ellison, A.M., Anger, K., Berger, U. (2007) “A World Without Mangroves?” Science, 317, 41–42. 9) Erener, A., Du ¨zgu ¨n, S., & Yalciner, A. C. (2012). Evaluating land use/cover change with temporal satellite data and information systems. Procedia Technology, 1, 385–389. 10) Erener, A., Du ¨zgu ¨n, S., & Yalciner, A. C. (2012). Evaluating land use/cover change with temporal satellite data and information systems. Procedia Technology, 1, 385–389. 11) Foody, G. M. (2002). Status of land cover classification accuracy assessment. Remote Sensing of Environment, 80(1), 185–201. 12) Friess, A.D., Scales, I. R., Glass, L., and Ravaoarinorotsihoarana, L., (2016) “Rural livelihoods and mangrove degradation in south-west Madagascar: lime production as an emerging threat”, Fauna & Flora International, pp-1-5. 13) Gao, Y., & Zhang, W. (2009). LULC classification and topographic correction of Landsat-7 ETM ? imagery in the Yangjia River Watershed: The influence of DEM resolution. Sensors, 9(3), 1980– 1995. 14) Gautam, N.C.,& Narayanan, L.R.A., 1983. Landsat MSS data for land use/land cover inventory and mapping: A case study of Andhra Pradesh, J.IndianSoc, Remote Sensing, 11(3), pp 15-28. 15) Giri, C. & Muhlhausen, J. (2008) “Mangrove Forest Distribution Sand Dynamics In Madagascar (1975 – 2005)”, Sensors, vol-8, pp.2104 –2117. 16) Guler, M., Yomralıoglu, T., & Reis, S. (2007). Using landsat data to determine land use/land cover changes in Samsun, Turkey. Environmental Monitoring and Assessment, 127(1–3), 155–167. 17) Guler, M., Yomralıoglu, T., & Reis, S. (2007). Using landsat data to determine land use/land cover changes in Samsun, Turkey. Environmental Monitoring and Assessment, 127(1–3), 155–167. 18) Gumma, M. K., Thenkabail, P. S., Hideto, F., Nelson, A., Dheeravath, V., Busia, D., et al. (2011). Mapping irrigated areas of Ghana using fusion of 30 m and 250 m resolution remote-sensing data. Remote Sensing, 3(4), 816–835. 19) Hegazy, I. R., and Kaloop, M. R. (2015). Monitoring urban growth and land use change detection with GIS and remote sensing techniques in Daqahlia governorate Egypt. International Journal of Sustainable Built Environment, 4(1), 117–124. 20) Helmer, E. H., Brown, S., & Cohen, W. B. (2000). Mapping montane tropical forest successional stage and land use with multi-date Landsat imagery. International Journal of Remote Sensing, 21(11), 2163–2183. 21) Herold, M., Scepan, J., & Clarke, K. C. (2002). The use of remote sensing and landscape-metrics to describe structures and changes in urban land uses. Environment and Planning A, 34(8), 1443– 1458. 22) Jain, S.K., 1992. Land use mapping of Tawi catchment using satellite data. Report No.CS72, National Institute of Hydrology, Roorkee, 52. 23) Jayakumar, S., and Arockiasamy, D. (2003), ‘Land use land cover mapping and change detection in part of Eastern Ghats of Tamil Nadu using remote sensing and GIS’, Journal of Indian Society of Remote Sensing 31, 251–260. 24) Jensen, J. R. (2007). Remote sensing of the environment (2nd ed.). Upper Saddle River: Pearson Prentice Hall. 25) Ji, W., Ma, J., Twibell, R. W., & Underhill, K. (2005). Characterizing urban sprawl using multistage remote sensing images and landscape metrics. Computers, Environment and Urban Systems, 30(2006), 861–879.3 26) Jia, K., Wei, X., Gu, X., Yao, Y., Xie, X., & Li, B. (2014). Land cover classification using Landsat 8 Operational Land Imager data in Beijing, China. Geocarto International, 29(8), 941–951. 27) Kumar, R. (2016). Flood hazard assessment of 2014 floods in Sonawari sub-district of Bandipore district (Jammu & Kashmir): An application of geoinformatics. Remote Sensing Applications: Society and Environment, 4, 188–203. 28) Lambin, E. F., Turner, B. L., Geist, H. J., Agbola, S. B., Angelsen, A., Bruce, J. W., et al. (2001). The causes of land-use and land-cover change: Moving beyond the myths. Global Environmental Change, 11(2), 261–269. 29) Liu, T., and Yang, X. (2015). Monitoringland changesin anurban area using satellite imagery, GIS and landscape metrics. Applied Geography, 56, 42–54. 30) Loveland T. R., & Acevedo W. (2006) Land cover change in the Eastern United States, US Geological survey. 31) Lu, D., & Weng, Q. (2004). Spectral Mixture Analysis of the Urban Landscape in Indianapolis with Landsat ETM ? Imagery. Photogrammetric Engineering and Remote Sensing, 70(9), 1053– 1062. 32) Lu, D., Hetrick, S., Moran, E., & Li, G. (2012). Application of time series landsat images to examining land-use/landcover dynamic change. Photogrammetric Engineering and Remote Sensing, 78(7), 747–755. 33) Malakar, K.D., (2020). The Mangrove: Future of the Global seacoast. Globe edit, Germany, ISBN: 978-620-0-60757-7. 34) Map Library (MAP) (2000) (http://www.maplibrary.org/library/stacks/Africa/Madagascar/Mahajanga/Mahajanga%20Urban/index.htm) 35) Nelson, F. (1983). Detecting forest canopy change due to insect activity using Landsat MSS. Photogrammetric Engineering and Remote Sensing, 49(9), 1303–1314. 36) Ojima, D. S., Galvin, K. A., & Turner, B. L. (1994). The global impact of land-use change. BioScience, 44(5), 300. 37) Quintas-Soriano, C., Castro, A. J., Castro, H., & Garcı ´a-Llorente, M. (2016). Impacts of land use change on ecosystem services and implicationsfor human well-being in Spanish drylands. Land Use Policy, 54, 534–548. 38) Seto, K. C., & Kaufmann, R. K. (2005). Using logit models to classify land cover and land-cover change from Landsat Thematic Mapper. International Journal of Remote Sensing, 26(3), 563–577. 39) Shah, S. A. (2012). Use of geographic information system in land use studies: A micro level analysis. European Journal of Applied Sciences, 4(3), 123–128. 40) Sharma, K.R., Jain, S.C., &Garg, R.K, 1984. Monitoring land use and land cover changes using landsat imager, J. Indian Soc. Remote Sensing 12(2), pp 115-121. 41) Singh, A. (1989). Review article digital change detection techniques using remotely-sensed data. International Journal of Remote Sensing, 10(6), 989–1003. 42) Turner, B. L., Moss, R. H., & Skole, D. L. (1993). Relating land use and global land-cover change. In Unknown host publication title. International geosphere-biosphere programme, Stockholm; Report, 24/human dimensions of global environmental change programme, Barcelona; Report 5. 43) UNEP (2014) “The Importance of Mangroves: A Call to Action”, United Nations Environment Programme– World Conservation Monitoring Centre, Cambridge, UK. 44) World Conservation Monitoring Centre (WCMC) https://www.unep-wcmc.org/ 45) Yang, X. (2002). Satellite monitoring of urban spatial growth in the Atlanta metropolitan area. Photogrammetric Engineering and Remote Sensing, 68(7), 725–734. 46) Yang, X., & Liu, Z. (2005). Using satellite imagery and GIS for land-use and land-cover change mapping in an estuarine watershed. International Journal of Remote Sensing, 26(23), 5275–5296.

scroll to top